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Heterotic string compactification

There are two approaches to model-building in heterotic string theory:

1. Exact CFTs

Solvable worldsheet theories e.g. toroidal orbifolds, free fermions etc.

2. Geometric compactifications

Solutions of 10D supergravity, with stringy corrections.

Both can yield realistic gauge groups and spectra.
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Smooth Calabi-Yau compactifications

A smooth geometric compactification of E8×E8 heterotic string theory:

• A Calabi-Yau threefold X (Kähler, c1(X ) = 0).

• A (stable, holomorphic) vector bundle V on X . The gauge field is a
connection on this bundle.

This amounts to a solution of the Einstein-Yang-Mills equations on X ,
preserving minimal supersymmetry in 4D.

We usually assume the standard model comes entirely from one E8.
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Observable gauge group

Background gauge field takes values in a subgroup H ⊂ E8, called the
structure group of the vector bundle. Resulting 4D gauge group is the
centraliser of H in E8.

Structure group SU(3) SU(4) SU(5)

4D gauge group E6 Spin(10) SU(5)

Problem: There are no Higgs fields present which can break these GUT
groups to the standard model gauge group.
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Wilson line symmetry breaking

Solution: If spacetime is not simply-connected, the field strength
(curvature) does not specify the gauge field. Complete information
contained in Wilson loops:

W (γ) = P exp(

∫
γ

A)

Break the 4D gauge group further by turning on Wilson loops around
non-contractible paths.
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Covering spaces

A multiply-connected manifold has a unique simply-connected covering
space.

Example:

The circle S1, covered by the
real line R.

The manifold is then a quotient of its covering space.
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The Z5 quotient of the quintic

A well-known Calabi-Yau 3-fold is a quintic hypersurface X̃ in P4:

p :=
∑

Aijklm xi xj xk xl xm = 0

Define an action of the group Z5 on P4:

(x0, x1, x2, x3, x4)→ (x0, ζx1, ζ
2x2, ζ

3x3, ζ
4x4) where ζ = exp(2πi/5)

Invariant quintic hypersurface:

Aijklm = 0 unless i + j + k + l + m ≡ 0 mod 5.
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The Z5 quotient of the quintic

The Z5 quotient is smooth if and only if:

• The group action is fixed-point-free.

• The covering space (given by p = 0) is smooth.

Checking fixed points

(1, 0, 0, 0, 0) ∈ P4 is fixed under Z5. At this point p = A00000 6= 0.

Checking smoothness

The quintic is smooth if p = dp = 0 has no solutions.

X = X̃/Z5 is thus a smooth Calabi-Yau manifold with π1(X ) ' Z5.

Many more examples: Candelas & Davies arXiv:0809.4681
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Fixed points

In many cases, fixed points arise automatically.

The resulting quotient spaces are not manifolds, but orbifolds.

Orbifolds

An orbifold here is locally C3/G for some group G (including trivial).
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Demanding fixed points

Special choice A00000 = 0 gives p = 0 at fixed point (1, 0, 0, 0, 0).

In local coordinates ya = xa/x0,

p = y1 y4 − y2 y3 +O(y3)

So in fact p = dp = 0 at the fixed point, and X̃ has a conifold singularity.

X develops a worse local singularity: a Z5 quotient of the conifold.
Call this a hyperconifold singularity.
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Proof of occurrence of hyperconifolds

Question: Is the quintic example an accident?

Scenario

• ZN acts on Ck+3 via xi → ζqi xi , where ζ = exp(2πi/N).

• q1 = . . . = qdim I = 0; I is subspace of points fixed by ZN .

• X̃ given locally by k equations f1 = . . . = fk = 0 in Ck+3.

• Polynomials transform as fa → ζQa fa.

• For generic choices of the fa, ZN action on X̃ is free.
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Proof of occurrence of hyperconifolds

Rough proof:

1. fa|I ≡ 0 unless Qa = 0.

2. Action on X̃ free ⇒ f1 = . . . fk = 0 no solutions on I .

3. 1. and 2. imply Q1 = . . . = Qdim I+1 = 0.

4. Enforce a fixed point: set fa = 0 for all a at origin.

5. If 1 ≤ a ≤ dim I + 1, we expand

fa =
dim I∑
i=1

Ca,i xi +O(x2)

6. Then df1 ∧ . . . ∧ dfdim I+1 = 0 at origin, so X̃ is singular there.
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The conifold

The conifold as a hypersurface

Simplest singularity of a complex threefold:

y1 y4 − y2 y3 = 0 in C4

Two ways to think of the topology:

• A complex cone over S2×S2 (P1×P1).

• A real cone over S2×S3.
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The conifold

The conifold as a quotient

Four coordinates (z1, z2, z3, z4) on C4 \ S.

(z1, z2, z3, z4) ∼ (λ z1, λ z2, λ
−1 z3, λ

−1 z4) for all λ ∈ C∗

Call these the ‘homogeneous coordinates’. Isomorphism to hypersurface:

y1 = z1z3 , y2 = z1z4 , y3 = z2z3 , y4 = z2z4
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Toric varieties

An n-dimensional toric variety is an algebraic variety Y which

• Contains (C∗)n as a dense subset.

• Admits an action (C∗)n × Y → Y extending the action of (C∗)n on
itself.

Specified by a fan in the lattice N ' Zn.
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A simple toric variety: P2

The torus (C∗)2 is embedded in P2:

(λ1, λ2)→ (1, λ1, λ2)

and acts on it appropriately:

(λ1, λ2) · (x0, x1, x2) = (x0, λ1x1, λ2x2)
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The fan for P2

The edges of the fan are generated by v0, v1, v2 ∈ Z2 satisfying
v0 + v1 + v2 = 0

v0

v1

v2

Corresponds to (x0, x1, x2) ∼ (λ x0, λ x1, λ x2).
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The conifold as a toric variety

Consider edges generated by v1, v2, v3, v4 ∈ Z3 with v1 + v2− v3− v4 = 0:

v1

v2

v3
v4

v1

v2

v3

v4

Corresponds to (z1, z2, z3, z4) ∼ (λ z1, λ z2, λ
−1z3, λ

−1z4).
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Some toric geometry facts

Let Y be an n-dimensional toric variety.

1. Y has at most orbifold singularities (i.e. Cn/G for some discrete
group G ) iff its fan contains only simplicial cones.

2. Y is non-singular iff all cones are simplicial of minimal volume.

For 2, each cone is just 〈(1, 0, . . . , 0), . . . , (0, . . . , 0, 1)〉. This is simply Cn.
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Resolving the conifold

Sub-divide the fan to obtain a smooth (crepant) resolution:

The singular point has been replaced by a copy of P1.

Doesn’t necessarily give a Kähler resolution of the compact variety.
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Revisiting the Z5-hyperconifold

Recall for the Z5 quintic we get:

{y1 y2 − y3 y4 = 0}/ ∼ where (y1, y2, y3, y4) ∼ (ζ y1, ζ
2 y2, ζ

3 y3, ζ
4 y4)

But the ya are given in terms of the homogeneous coordinates

y1 = z1z3 , y2 = z1z4 , y3 = z2z3 , y4 = z2z4

So we get an extra equivalence relation on the homogeneous coordinates:

(z1, z2, z3, z4) ∼ (z1, ζ
2z2, ζz3, ζ

2z4)
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The fan for the Z5-hyperconifold

Discrete factors in quotient group give the same fan in a new lattice:

The toric formalism makes it easy to resolve the singularity:
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Important example: The Z2-hyperconifold

Unique Z2 action fixing only the origin:

(y1, y2, y3, y4)→ (−y1,−y2,−y3,−y4)

Resulting equivalence relation on homogeneous coordinates:

(z1, z2, z3, z4) ∼ (z1, z2,−z3,−z4)

The fan is now
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Blowing up the conifold

Guarantee a Kähler resolution of the conifold by ‘blowing up’

New vector lies out of hyperplane ⇒ not a crepant resolution.

Variety with one conifold singularity has no Calabi-Yau resolution.
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Blowing up the conifold

Guarantee a Kähler resolution of the conifold by ‘blowing up’

This manifold is given explicitly by

(z1, z2, z3, z4, z5) ∼ (λ z1, λ z2, µ z3, µ z4, λ
−1µ−1z5)

This is the bundle O(−1,−1) over P1×P1.
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Blowing up the Z2-hyperconifold

Story for Z2 quotient is different, due to different lattice.

Blowing up now gives a crepant resolution

This space is given by

(z1, z2, z3, z4, z5) ∼ (λ z1, λ z2, µ z3, µ z4, λ
−2µ−2z5)

This is O(−2,−2) over P1×P1.
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The Z2M-hyperconifolds

The above analysis can be carried out for all known ZN actions.

For N = 2M, we can blow up the singular point as before:

Z6:
Blow up−→

Z8:
Blow up−→

This leaves only orbifold singularities with unique resolutions.
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Hyperconifold transitions in string theory?

Summary of process:

• Begin with smooth Calabi-Yau X .

• Deform until a hyperconifold singularity develops.

• Blow up singularity.

This is a continuous path through Calabi-Yau moduli space.

Perhaps also a continuous process in string theory.

New light degrees of freedom: winding modes/twisted sectors of strings.
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Summary

• Multiply-connected Calabi-Yau threefolds generically develop
isolated ‘hyperconifold’ singularities.

• This lets us explicitly embed hyperconifolds in compact Calabi-Yau
varieties.

• Using toric geometry, such singularities can be resolved to yield new
smooth Calabi-Yau manifolds.
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